Волоконно-оптические системы связи на пороге третьего тысячелетия

Главная » Каталог статей » Статьи на русском » Волоконно оптические технологии » Волоконно-оптические системы связи на пороге третьего тысячелетия

С началом третьего тысячелетия мир вступает в информационную эру, которая, с одной стороны, характеризуется непрерывно растущими потребностями человеческого общества в обмене информацией и, с другой стороны, появлением впервые в истории человечества технических возможностей практически полностью удовлетворить эти потребности.

История становления и развития человеческого общества неразрывно связана с совершенствованием средств связи и передачи информации. Поэтому в эту область деятельности всегда вкладываются большие средства, в ней используются новейшие достижения науки и техники. Несмотря на это до сих пор потребности в обмене информацией превышают технические возможности общества. И только с освоением оптических методов передачи и обработки информации у человечества возникли реальные возможности создания технических условий для практически полного удовлетворения своих потребностей в обмене информацией.

В связи с этим интересно обратить внимание на динамику развития систем связи за последние сто с небольшим лет, т.е. со времени появления телефона в 90-х годах прошлого столетия. Анализ показывает, что примерно за 90 лет со дня появления первых телефонных линий информационная ёмкость каналов связи выросла на 5 порядков с 1 бит/с до 105 бит/с. За 20 лет, прошедшие с начала активного использования волоконно-оптических линий связи, емкость систем связи выросла на 7 порядков, достигнув скорости передачи порядка 1 Тбит/с. Этот скачок стал возможен только благодаря качественному изменению систем связи — становлению и внедрению волоконно-оптических технологий.

Темпы развития волоконно-оптической связи в мире действительно поразительны. В настоящее время производство волоконных световодов достигло 70 млн. км в год, каждую минуту в мировых телекоммуникациях прокладывается свыше 100 км оптического волокна. Уже все материки связаны между собой подводными волоконно-оптическими линиями связи, продолжается интенсивное строительство наземных междугородных и внутригородских волоконно-оптических систем и сетей связи.

На основе развития современных технологий оптической обработки информации, таких как спектральное уплотнение каналов (DWDM-технологии), а также разработки методов и устройств усиления оптических сигналов, новых типов оптических волокон, в конце 90-х годов были созданы экспериментальные волоконно-оптические системы связи, обладающие скоростями передачи информации свыше 1 Тбит/с. Несомненно, что в ближайшие годы такие системы будут доведены до практической реализации и найдут коммерческое применение в мировых телекоммуникационных сетях связи. Однако уже сейчас ясно, что даже такие скорости передачи не могут удовлетворить растущие потребности человечества в обмене информацией, особенно в связи с развитием в последние годы интернета.

Какие же существуют пути для увеличения информационной ёмкости волоконно-оптических систем связи? По-видимому, первым и наиболее очевидным путём является расширение спектральной области для передачи информации. Практически все современные системы связи работают во втором и третьем окнах прозрачности волокна, т.е. в диапазонах длин волн l = 1,3 мкм и l = 1,55 мкм соответственно. Область в диапазоне l = 1,4 мкм до последнего времени была закрыта из-за наличия сильного поглощения в волокне, обусловленного наличием гидроксильных групп в кварцевом стекле. Успехи в технологии изготовления волоконных световодов позволили убрать эту полосу поглощения, в результате чего спектральная область оптического волокна с малыми потерями (< 0,3 дБ/км) расширилась до 500 нм и лежит в диапазоне длин волн 1200-1700 нм. Использование всего спектрального диапазона волокна позволяет резко увеличить информационную ёмкость волоконно-оптических систем со спектральным уплотнением каналов. Действительно, при достижимых в настоящее время значениях спектральных интервалов (разность между длинами волн соседних каналов), равных 0,2 нм, и скорости передачи информации в отдельном канале 160 Гбит/с (см. ФЭ №21) получается, что по одному волокну можно передать 2500 спектральных каналов и реализовать суммарную скорость передачи, равную 400 Тбит/с. С учетом дальнейшего прогресса волоконно-оптических технологий можно предположить, что, используя только спектральный интервал 1,2-1,7 мкм, в будущем можно будет передавать по одному волокну информацию со скоростью в 1000 Тбит/с. Очевидно, что для практической реализации таких систем связи потребуются новые исследования и разработка новой элементной базы, в частности создание широкополосных оптических усилителей, мультиплексоров и демультиплексоров, оптических переключателей света и т.д. Однако, учитывая бурный прогресс в части развития волоконно-оптических технологий, можно с достаточно большой долей уверенности утверждать, что такие системы также будут реализованы практически.

Оставьте комментарий к статье